Lecture Outline

- Quadratic penalty method
- Nonsmooth exact penalty methods
- Method of multipliers or augmented Lagrangian method

You should be able to ...

- Understand the reasoning behind using penalty methods;
- Identify different penalty methods;
- Cast a problem using penalty methods;
- Implement different penalty methods and characterise their convergence properties.

Penalty and Augmented Lagrangian Methods

- The original problem replaced by a sequence of subproblems where the constraints are represented by terms added to the objective.
 - The *quadratic penalty method* adds a multiple of the square of the violation of each constraint to the objective.
 - In nonsmooth exact penalty methods, a single unconstrained problem (rather than a sequence) takes the place of the original constrained problem.
 - The method of multipliers or augmented Lagrangian method Lagrange multiplier estimates are used to avoid the ill-conditioning that is inherent in the quadratic penalty function.
- A related method is the *log-barrier method* that will be discussed in the interior point methods.

- The original constrained optimisation problem is replaced by a single function consisting of
 - the original objective of the constrained optimization problem, plus
 - one additional term for each constraint, which is positive when the current point x violates that constraint and zero otherwise.
- Often a sequence of such penalty functions are used.
- Consider $\min_x f(x)$, s.t. $c_i(x) = 0, i \in \mathcal{E}$.
- The quadratic penalty function $Q(x; \mu)$ for this problem is

$$Q(x;\mu) = f(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x),$$

- $\mu > 0$ is the penalty parameter. By driving μ to ∞ the constraint violations become more severe.
- Let $\{\mu_k\}$ where $\mu_k \uparrow \infty$ as $k \to \infty$. At each step the approximate minimiser x_k of $Q(x; \mu_k)$ is found.

Algorithm: Quadratic Penalty Method

```
Choose x_0, k \leftarrow 0, and sequences \{\mu_k\} \uparrow \infty and \{\tau_k\} \to 0 while A termination condition is not satisfied do x_{k+1} \leftarrow \arg\min_x Q(x; \mu_k) \quad \triangleright The termination condition for the subproblem: \|\nabla_x Q(x; \mu_k)\| \le \tau_k. k \leftarrow k+1 end while
```

- $\{\mu_k\}$ can be chosen adaptively based on the difficulty of minimizing the penalty function at each iteration.
- $\|\nabla_x Q(x; \mu_k)\| \le \tau_k$ may not be satisfied because the iterates may move away from the feasible region when the penalty parameter is not large enough.
- A practical implementation increases the penalty parameter or restores the initial point when
 - the constraint violation is not decreasing rapidly enough, or
 - when the iterates appear to be diverging.

- As μ_k becomes large the Hessian $\nabla^2 Q(x; \mu_k)$ becomes ill-conditioned near the minimizer.
- This results in the poor performance of many algorithms, e.g. quasi-Newton algorithms
- Newton's method itself is not sensitive to ill conditioning of the Hessian, but
 - The ill conditioning of $\nabla^2 Q(x; \mu_k)$ causes numerical problems when solving for the Newton step (There is a way around it).
 - Even when x is close to x^* , the minimizer of $Q(x; \mu_k)$, the quadratic Taylor series approximation to $Q(x; \mu_k)$ about x is a reasonable approximation of the true function only in a small neighborhood of x.
- The second issue can be mitigated by decreasing the grow rate of μ_k .

Theorem: Suppose $Q(x; \mu_k)$ has a (finite) minimiser for each value of μ_k and each x_k is its exact global minimiser, and that $\{\mu_k\} \uparrow \infty$. Then every limit point x^* of the sequence $\{x_k\}$ is a global solution of the original problem.

• Let \bar{x} be the global minimiser of the original problem. Since x_k is its exact global minimiser of $Q(x; \mu_k)$:

$$Q(x_k; \mu_k) \leq Q(\bar{x}; \mu_k) \Rightarrow f(x_k) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x_k) \leq f(\bar{x}) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(\bar{x})$$

- Since, $c_i^2(\bar{x}) = 0$: $\sum_{i \in \mathcal{E}} c_i^2(x_k) \le \frac{2}{\mu} (f(\bar{x}) f(x_k))$.
- There is infinite subsequence \mathcal{K} : $\lim_{k \in \mathcal{K}} x_k = x^*$. Thus,

$$\sum_{i \in \mathcal{E}} c_i^2(x^*) = \lim_{k \in \mathcal{K}} \sum_{i \in \mathcal{E}} c_i^2(x_k) \le \lim_{k \in \mathcal{K}} \frac{2}{\mu} (f(\bar{x}) - f(x_k)) = 0.$$

• Thus x^* is feasible.

- Similarly, $f(x^*) \le f(x^*) + \lim_{k \in \mathcal{K}} \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(x_k) \le f(\bar{x})$
- Hence, x^* is a global minimiser as well.
- This result requires finding the global minimiser at each step and it might not be true in general.

Theorem: Suppose $\{\mu_k\} \uparrow \infty$ and $\{\tau_k\} \to 0$, and that $\|\nabla_x Q(x; \mu_k)\| \le \tau_k$ is satisfied at each k. Then if a limit point x^* of $\{x_k\}$ is infeasible, it is a stationary point of the function $\|c(x)\|^2$. On the other hand, if a limit point x^* is feasible and the constraint gradients $\nabla c_i(x^*)$ are linearly independent, then x^* is a KKT point for the original problem. For such points, we have for any infinite subsequence \mathcal{K} such that $\lim_{k \in \mathcal{K}} x_k = x^*$ that $\lim_{k \in \mathcal{K}} -\mu_k c_i(x_k) = \lambda_i^*$, $\forall i \in \mathcal{E}$, where λ^* is the multiplier vector that satisfies the KKT conditions for the original problem.

• From the definition of the Q and the termination condition:

$$\nabla_x Q(x_k; \mu_k) = \nabla f(x_k) + \mu_k \sum_{i \in \mathcal{E}} c_i(x_k) \nabla c_i(x_k)$$

$$\left\| \nabla f(x_k) + \mu_k \sum_{i \in \mathcal{E}} c_i(x_k) \nabla c_i(x_k) \right\| \le \tau_k \xrightarrow{(\|a\| - \|b\| \le \|a + b\|)}$$

$$\left\| \sum_{i \in \mathcal{E}} c_i(x_k) \nabla c_i(x_k) \right\| \le \frac{1}{\mu_k} (\tau_k + \|\nabla f(x_k)\|)$$

• Given a subsequence \mathcal{K} where $\lim_{k \in \mathcal{K}} x_k = x^*$, then $\sum_{i \in \mathcal{E}} c_i(x^*) \nabla c_i(x^*) = 0$. Thus, x^* is a stationary point of $\|c_i(x)\|^2$. If $\nabla c_i(x^*)$ are independent then x^* is feasible.

• Let $C(x)^T = [\nabla c_i(x)]_{i \in \mathcal{E}}$ and $\lambda_k = -\mu_k c(x_k)$:

$$C(x_k)^T \lambda_k = \nabla f(x_k) - \nabla Q(x_k; \mu_k), \quad \|\nabla_x Q(x; \mu_k)\| \le \tau_k$$

• For all sufficiently large $k \in \mathcal{K}$, $C(x_k)$ is full row rank:

$$\lambda_k = \left[C(x_k)C(x_k)^T \right]^{-1} C(x_k) (\nabla f(x_k) - \nabla Q(x_k; \mu_k))$$

- Hence, $\lim_{k \in \mathcal{K}} \lambda_k = \lambda^* = \left[C(x^*) C(x^*)^T \right]^{-1} C(x^*) \nabla f(x^*).$
- Consequently, by taking limits of the termination condition:

$$\nabla f(x^*) - C(x^*)^T \lambda^* = 0$$

- So, the KKT conditions are satisfied.
- If x^* is not feasible, it is at least a stationary point for the function $||c(x)||^2$.

The Quadratic Penalty Method: Ill Conditioning and Reformulation

• We examine the nature of the ill conditioning in the Hessian

$$\nabla^2 Q(x; \mu_k) = \nabla^2 f(x_k) + \mu_k \sum_{i \in \mathcal{E}} c_i(x) \nabla^2 c_i(x) + \mu_k C(x)^T C(x)$$

• When x is close to the minimiser of $\nabla^2 Q(x; \mu_k)$ from the previous theorem:

$$\nabla^2 Q(x; \mu_k) \approx \nabla^2 \mathbf{L}(x, \lambda^*) + \mu_k C(x)^T C(x)$$

- Thus, $\nabla^2 Q(x; \mu_k)$ is equal to the sum of
 - a matrix whose elements are independent of μ_k (the Lagrangian term), and
 - a matrix of rank $|\mathcal{E}|$ (often $|\mathcal{E}| < n$) whose nonzero eigenvalues are of order μ_k (the second term)
- $\kappa(\nabla^2 Q(x; \mu_k)) \to \infty$.

The Quadratic Penalty Method: Ill Conditioning and Reformulation

- This ill conditioning makes the computation of the Newton step p problematic: $\nabla^2 Q(x_k; \mu_k) p = -\nabla Q(x_k; \mu_k)$
- Introduce the auxiliary variable ζ , then

$$\begin{bmatrix} \nabla^2 f(x_k) + \sum_{i \in \mathcal{E}} \mu_k c_i(x_k) \nabla^2 c_i(x_k) & C(x_k)^T \\ C(x_k) & -\frac{1}{\mu_k} I \end{bmatrix} \begin{bmatrix} p \\ \zeta \end{bmatrix} = \begin{bmatrix} -\nabla Q(x_k; \mu_k) \\ 0 \end{bmatrix}$$

- When x is not too far from the solution x^* , the coefficient matrix in this system does not have large singular values (of order μ_k).
- So it is a well-conditioned reformulation.
- Neither system may yield a good search direction p (because $\mu_k c_i(x_k)$ might be poor approximations of $-\lambda_i^{\star}$)
- The reformulation requires solving a linear system of dimension $n + |\mathcal{E}|$ instead of n.

- Some penalty functions are exact: for certain choices of their penalty parameters, a single minimization can yield the exact solution of the original problem.
- A popular one is the ℓ_1 penalty function (let $[x]^- = \max(0, -x)$):

$$\phi_1(x; \mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} [c_i(x)]^{-1}$$

- The penalty is μ times the ℓ_1 norm of the constraint violation.
- The exactness requirement is loosely as the following:
- At x^* , any move into the infeasible region is penalized sharply enough that it produces an increase in the penalty function to a value greater than $\phi_1(x^*; \mu) = f(x^*)$, thereby forcing the minimizer of $\phi_1(x; \mu)$ to be at x^* .

Theorem (Exactness of the ℓ_1 Penalty Function): Suppose that x^* is a strict local minimiser at which the first-order necessary KKT conditions are satisfied, with Lagrange multipliers λ_i^* , $i \in \mathcal{E} \cup \mathcal{I}$. Then x^* is a local minimiser of $\phi_1(x; \mu)$ for all $\mu > \mu^*$, where

$$\mu^{\star} = \|\lambda^{\star}\|_{\infty} = \max_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^{\star}.$$

If in addition, the second-order sufficient conditions hold and $\mu > \mu^*$, then x^* is a strict local minimizer of $\phi_1(x;\mu)$.

Definition: A point \hat{x} is a stationary point for the penalty function $\phi_1(x; \mu)$ if $\mathbf{D}(\phi_1(\hat{x}; \mu); p) \geq 0$, $\forall p$. Similarly, \hat{x} is a stationary point of the measure of infeasibility $h(x) = \sum_{i \in \mathcal{E}} |c_i(x)| + \sum_{i \in \mathcal{I}} [c_i(x)]^-$ if $\mathbf{D}(h(\bar{x}); p) \geq 0$, $\forall p$.

Definition: If a point is infeasible for the penalty function but stationary with respect to the infeasibility measure h, we say that it is an infeasible stationary point.

• Now it is shown that that stationary points of $\phi_1(x; \mu)$ correspond to KKT points of the original constrained optimization problem under certain assumptions.

Theorem: Suppose that \hat{x} is a stationary point of the penalty function $\phi_1(x; \mu)$ for all $\mu > \hat{\mu} > 0$ for some $\hat{\mu}$. Then, if \hat{x} is feasible for the original problem, then it satisfies the KKT conditions for the original problem. If \hat{x} is not feasible for the original problem, it is an infeasible stationary point.

Algorithm: Classical ℓ_1 Penalty Method

```
Choose x_0, k \leftarrow 0, \mu_0 > 0 and tolerance \tau > 0 while h(x_0) > \tau do

Set x_{k+1} to be an approximate minimizer of \phi_1(x;\mu) \rightarrow Iterations for the solution start at x_k.

Choose \mu_{k+1} \rightarrow \mu_k, Simplest: \mu_{k+1} = \gamma \mu_k end while
```

- The minimization of $\phi_1(x; \mu)$ is made difficult by the nonsmoothness of the function. But possible to use a smooth model of it.
- This scheme sometimes works well in practice, but can also be inefficient.
 - Too many cycles if μ_0 is too small.
 - The iterates may move away from the solution (the subproblem should be terminated early, or x to be reset.)
 - The penalty function will be difficult to minimize if μ_k is too large.

Nonsmooth Penalty Functions: A Practical ℓ_1 Penalty Method

- We won't use the generic nonsmooth teheniques, e.g. bundle methods, but take advantage the particular nondifferentiabilities of the function.
- A step toward the minimizer of $\phi_1(x; \mu)$ is obtained via forming a simplified model of it and minimising it.
- It is done by linearizing the constraints c_i and replacing the nonlinear programming objective f by a quadratic function:

$$Q(p,\mu) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T W p$$

+ $\mu \sum_{i \in \mathcal{E}} |c_i(x) + \nabla c_i(x)^T p| + \mu \sum_{i \in \mathcal{I}} [c_i(x) + \nabla c_i(x)^T p]^{-1}$

• W is a symmetric matrix which contains second derivative information about f and c_i .

Nonsmooth Penalty Functions: A Practical ℓ_1 Penalty Method

• $Q(p, \mu)$ is not smooth, but minimising it can be formulated as a smooth problem:

$$\min_{p,r,s,t} \quad f(x) + \frac{1}{2} p^T W p + \nabla f(x)^T p + \mu \sum_{i \in \mathcal{E}} (r_i + s_i) + \mu \sum_{i \in \mathcal{I}} t_i$$
s.t.
$$c_i(x) + \nabla c_i(x)^T p = r_i - s_i, \ i \in \mathcal{E}$$

$$c_i(x) + \nabla c_i(x)^T p \ge -t_i, \ i \in \mathcal{I}$$

$$r, s, t \ge 0$$

- This subproblem can be solved with a standard quadratic programming solver.
- Sometimes the penalty parameter is chosen at every iteration so that $\mu_k > ||\lambda_k||_{\infty}$, where λ_k is an estimate of the Lagrange multipliers computed at x_k .
- These methods fell out of favour but there has been a resurgence of interest in penalty methods.

- It is related to the quadratic penalty algorithm.
- Better conditioning by introducing explicit Lagrange multiplier estimates into the objective function: the augmented Lagrangian function.
- The augmented Lagrangian function largely preserves smoothness.
- The augmented Lagrangian function:

$$\mathbf{L}_{A}(x,\lambda;\mu) = f(x) - \sum_{i \in \mathcal{E}} \lambda_{i} c_{i}(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_{i}^{2}(x)$$

• It is a combination of the Lagrangian function and the quadratic penalty function.

• At each step k and fixing λ_k , from the necessary optimality condition:

$$\nabla \mathbf{L}_A(x_k, \lambda_k; \mu_k) = \nabla f(x_k) - \sum_{i \in \mathcal{E}} ([\lambda_k]_i - \mu_k c_i(x_k)) \nabla c_i(x_k)$$

• Comparing it with the optimality condition of the original problem, ideally:

$$\lambda_i^* = [\lambda_k]_i - \mu_k c_i(x_k) \implies c(x_k) = -\frac{1}{\mu_k} (\lambda_i^* - [\lambda_k]_i)$$

- The infeasibility of x_k decreases as the multiplier estimate gets closer to the real one. Also, the infeasibility is much smaller than $1/\mu_k$, compared to being proportional to $1/\mu_k$.
- Thus, to move λ_k closer to λ^* :

$$[\lambda_{k+1}]_i = [\lambda_k]_i - \mu_k c_i(x_k)$$

Algorithm: Augmented Lagrangian Method – Equality Constraint

```
Choose x_0, \lambda_0, \mu_0 > 0, k \leftarrow 0, and tolerance \tau_0 while A termination condition is not satisfied do x_k \leftarrow \arg\min_x \mathbf{L}_A(x,\lambda_k;\mu_k) \qquad \triangleright The starting point and the termination condition for the subproblem: x_k and \|\nabla_x \mathbf{L}_A(x,\lambda_k;\mu_k)\| \leq \tau_k. \lambda_{k+1} \leftarrow \lambda_k - \mu_k c(x_k) Choose the penalty parameter \mu_{k+1} \qquad \triangleright \mu_{k+1} \geq \mu_k Choose tolerance \tau_{k+1} k \leftarrow k+1 end while
```

- The convergence can be assured without increasing μ indefinitely; better conditioning
- τ_k may depend on the infeasibility $||c(x_k)||_1$.
- μ_k may be increased if the reduction in this infeasibility measure is insufficient.

Theorem: Let x^* be a local minimiser at which the LICQ is satisfied, and the second-order sufficient conditions are satisfied for $\lambda = \lambda^*$. Then there is a threshold value $\bar{\mu}$ such that for all $\mu \geq \bar{\mu}$, x^* is a strict local minimiser of $\mathbf{L}_A(x, \lambda^*; \mu)$.

- The proof is obtained by showing that x^* satisfies the second-order sufficient condition for $\mathbf{L}_A(x, \lambda^*; \mu)$ for sufficiently large μ .
- We know that $\mathbf{L}(x^*, \lambda^*) = 0$ and $c_i(x^*) = 0$, then:

$$\nabla \mathbf{L}_A(x^*, \lambda^*; \mu) = \nabla f(x^*) - \sum_{i \in \mathcal{E}} (\lambda_i^* - \mu c_i(x^*)) \nabla c_i(x^*)$$
$$= \nabla f(x^*) - \sum_{i \in \mathcal{E}} \lambda_i \nabla c_i(x^*) = \mathbf{L}(x^*, \lambda^*) = 0.$$

• Let $C(x)^T = [\nabla c_i(x)]_{i \in \mathcal{E}}$:

$$\nabla^2 \mathbf{L}_A(x^{\star}, \lambda^{\star}; \mu) = \nabla^2 \mathbf{L}(x^{\star}, \lambda^{\star}) + \mu C^T(x^{\star}) C(x^{\star})$$

• To obtain a contradiction assume $\nabla^2 \mathbf{L}_A(x^*, \lambda^*; \mu) \geq 0$. Then for each $k \geq 1$, $\exists w_k : ||w_k|| = 1$ such that

$$0 \ge w_k^T \nabla^2 \mathbf{L}_A(x^*, \lambda^*; k) w_k = w_k^T \nabla^2 \mathbf{L}(x^*, \lambda^*) w_k + k \|C(x^*) w_k\|^2$$
$$\|C(x^*) w_k\|^2 \le -\frac{1}{L} w_k^T \nabla^2 \mathbf{L}(x^*, \lambda^*) w_k$$

• $\{w_k\}$ are in a compact set and have an accumulation point w. taking the limit $k \to \infty$: $||C(x_k)w_k||^2 \to ||C(x^*)w||^2$, $C(x^*)w = 0$. Moreover,

$$w_k^T \nabla^2 \mathbf{L}(x^*, \lambda^*) w_k \le -k \|C(x^*) w_k\|^2 \le 0$$

• Taking the limit: $w^T \nabla^2 \mathbf{L}(x^*, \lambda^*) w \leq 0$, which contradicts the assumption.

Theorem: Suppose that the assumptions of the previous theorem are satisfied at x^* and λ^* and let $\bar{\mu}$ be chosen as in that theorem. Then there exist positive scalars δ , ϵ and M such that for all λ_k and μ_k satisfying $\|\lambda_k - \lambda^*\| \leq \mu_k \delta$ for $\mu_k \geq \bar{\mu}$ the following claims hold:

(a) The problem

$$\min_{x} \quad \mathbf{L}_{A}(x, \lambda_{k}; \mu_{k}), \quad s.t. \ \|x - x^{\star}\| \leq \epsilon,$$

has a unique solution x_k and

$$||x_k - x^*|| \le M||\lambda_k - \lambda^*||/\mu_k.$$

- (b) Let $\lambda_{k+1} = \lambda_k \mu_k c(x_k)$, then $\|\lambda_k \lambda^*\| \le M \|\lambda_k \lambda^*\| / \mu_k.$
- (c) The constraint gradients $\nabla c_i(x_k)$, $i \in \mathcal{E}$, are linearly independent and $\nabla^2 \mathbf{L}_A(x, \lambda_k; \mu_k) > 0$
- x_k will be close to x^* if λ_k is accurate or if μ_k is large.

Practical Augmented Lagrangian Methods: Bound-Constrained Formulation

- Via introducing slack variables, s_i the constraints in \mathcal{I} can be written as $c_i(x) s_i = 0$, $s_i \geq 0$, $\forall i \in \mathcal{I}$.
- Bound constraints $l \le x \le u$ can be kept unchanged.
- Then the problem (after incorporating s_i in x and relabeling c_i accordingly) takes the form of

$$\min_{x} f(x)$$
, s.t. $c_i(x) = 0$, $i \in \{1, ..., m\}$, $l \le x \le u$

• The bound-constrained Lagrangian (BCL):

$$\mathbf{L}_{A}(x,\lambda;\mu) = f(x) - \sum_{i=1}^{m} \lambda_{i} c_{i}(x) + \frac{\mu}{2} \sum_{i=1}^{m} c_{i}^{2}(x)$$

• The subproblem captures the bound constraints:

$$\min_{x} \mathbf{L}_{A}(x,\lambda;\mu), \quad \text{s.t. } l \leq x \leq u$$

• The multipliers λ and the penalty parameter μ are updated and the process is repeated.

Bound-Constrained Formulation

Algorithm: Bound-Constrained Lagrangian Method – LANCELOT

```
Choose x_0, \lambda_0, and tolerances \eta^* and \omega^*
\mu_0 \leftarrow 10; \, \omega_0 \leftarrow 1/\mu_0; \, \eta_0 \leftarrow 1/\mu_0^{0.1}; \, k \leftarrow 0
while ||c(x_k)|| > \eta^* and |x_k - \mathbf{P}(x_k - \nabla \mathbf{L}_A(x_k, \lambda_k; \mu_k), l, u)|| > 1
\omega^* do
     Find x_k s.t. ||x_k - \mathbf{P}(x_k - \nabla \mathbf{L}_A(x_k, \lambda_k; \mu_k), l, u)|| < \omega_k >
\mathbf{P}(y,l,u) projects y into the box defined by lower and upper
bounds l and u.
     if ||c(x_k)|| < \eta_k then \triangleright Update multipliers, tighten
tolerances.
           \lambda_{k+1} \leftarrow \lambda_k - \mu_k c(x_k)
           \mu_{k+1} \leftarrow \mu_k; \, \eta_{k+1} \leftarrow \eta_k / \mu_{k+1}^{0.9}; \, \omega_{k+1} \leftarrow \omega_k / \mu_{k+1};
                    ▶ Increase penalty parameter, tighten tolerances.
           \lambda_{k+1} \leftarrow \lambda_k
           \mu_{k+1} \leftarrow 100\mu_k; \eta_{k+1} \leftarrow 1/\mu_{k+1}^{0.1}; \omega_{k+1} \leftarrow 1/\mu_{k+1};
     end if
end while
```

Practical Augmented Lagrangian Methods: Linearly Constrained Formulation

- Linearly constrained Lagrangian (LCL) methods is to generate a step by minimizing the Lagrangian subject to linearizations of the constraints.
- The subproblem in LCL:

$$\min_{x} F_k(x)$$
s.t. $c(x_k) + C(x_k)(x - x_k) = 0, \quad l \le x \le u$

• Choices for $F_k(x)$

$$F_k(x) = f(x) - \sum_{i=1}^{m} [\lambda_k]_i [\bar{c}_k(x)]_i$$
 (early)

$$F_k(x) = f(x) - \sum_{i=1}^{m} [\lambda_k]_i [\bar{c}_k(x)]_i + \frac{\mu}{2} \sum_{i=1}^{m} [\bar{c}_k(x)]_i^2 \quad \text{(current - MINOS)}$$

$$[\bar{c}_k(x)]_i = c_i(x) - c_i(x_k) - \nabla c_i(x_k)^T (x - x_k)$$

Practical Augmented Lagrangian Methods: Unconstrained Formulation

- Using a derivation based on the proximal point approach.
- For simplicity assume $\mathcal{E} = \emptyset$.
- The the problem is defined as $\min_x F(x)$, where

$$F(x) = \max_{\lambda \ge 0} \left(f(x) - \sum_{i \in \mathcal{I}} \lambda_i c_i(x) \right) = \begin{cases} f(x) & x \in \mathcal{X} \\ \infty & \text{otherwise} \end{cases}$$

• F is nonsmooth but can be approximated by a smooth \hat{F} :

$$\hat{F}(x; \lambda_k, \mu_k) = \max_{\lambda \ge 0} \left(f(x) - \sum_{i \in \mathcal{I}} \lambda_i c_i(x) - \frac{1}{2\mu_k} \sum_{i \in \mathcal{I}} (\lambda_i - [\lambda_k]_i)^2 \right)$$

• A penalty for any move of λ away from the previous value; λ to stay *proximal* to the previous estimate.

Unconstrained Formulation

$$\hat{F}(x; \lambda_k, \mu_k) = \max_{\lambda \ge 0} \left(f(x) - \sum_{i \in \mathcal{I}} \lambda_i c_i(x) - \frac{1}{2\mu_k} \sum_{i \in \mathcal{I}} (\lambda_i - [\lambda_k]_i)^2 \right)$$

• Maximisaiton is bound-constrained separable quadratic problem in λ_i , thus

$$\lambda_i = \begin{cases} 0 & -c_i(x) + [\lambda_k]_i / \mu_k \le 0 \\ [\lambda_k]_i - \mu_k c_i(x) & \text{otherwise} \end{cases}$$

• Consequently, $\hat{F}(x; \lambda_k, \mu_k) = f(x) + \sum_{i \in \mathcal{I}} \psi(c_i(x), [\lambda_k]_i; \mu_k)$ where

$$\psi(s,\lambda;\mu) = \begin{cases} -\lambda s + \frac{\mu}{2}s^2 & s - \lambda/\mu \le 0\\ -\frac{1}{2\mu}\lambda^2 & \text{otherwise} \end{cases}$$

- Thus x_k can be obtained by minimising x and λ_{k+1} from the above formula.
- Not implemented in any package yet.