Lecture Outline

- Indicator Functions and Barrier transformation
- Optimality Conditions for the Barrier Transformed Problem
- Primal Interior Point Method (IPM)
- A primal-dual reformulation of the optimality conditions
- IPM for linear programmes;
- IPM for general convex problems;

You should be able to ...

- understand the origins of interior point methods (IPM);
- Formulate a primal IPM and identify its limitations;
- Formulate a primal-dual version of IPM;
- Observe how Newton's method is applied in IPM iterations;
- Write down an IPM for a general convex problem;

Interior-point methods

$$\begin{aligned} & \text{min} \quad f(x) \\ & \text{s.t.} \quad c_i(x) \geq 0, i \in \mathcal{I} \\ & \quad a_i^T x - b_i = 0, \quad i \in \mathcal{E} \end{aligned}$$

- f is convex, c_i are concave and all are twice differentiable.
- $\mathcal{I} \cap \mathcal{E} = \emptyset$ and $\mathcal{I} \cup \mathcal{E} = \{1, \dots, m\}$
- The optimal value exists and can be attained.
- The feasible set has an interior, in other words the Slaters' conditions are satisfied. ⇒ The strong duality holds.
- Other constraint qualifications are enough as well, e.g. LICQ, $c_{\mathcal{I}}$ being affine, etc.
- Examples are LPs, QPs, QCQPs, SDPs, ...

Indicator Functions and Barrier transformation

Reformulation via indicator functions:

min
$$f(x) + \sum_{i \in \mathcal{I}} \mathbb{I}(c_i(x))$$

s.t. $a_i^T x - b_i = 0, \quad i \in \mathcal{E}$

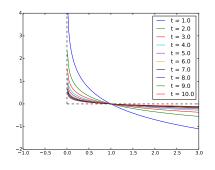
$$\mathbb{I}(x) = \begin{cases} 0, & x \ge 0 \\ \infty, & \text{otherwise} \end{cases}$$

- A smooth way of approximating indicator functions is to use logarithmic barrier functions; replace \mathbb{I} with $-\log(c_i(x))$
- Other barrier terms are possible. The logarithmic barrier term is the *canonical* choice.
- The effect is a perturbed problem where an infinite cost is incurred as $c_i(x) \to 0$.
- The weight on the barrier term is denoted by μ and is referred to as the barrier parameter.
- The combinatorial effect vs. a perturbation of the original

Barrier Transformation

$$\min \quad f(x) - \mu \sum_{i \in \mathcal{I}} \log(c_i(x))$$

s.t. $a_i^T x - b_i = 0, \quad i \in \mathcal{E}$



- For concave $c_i(x)$, $-\log(c_i(x))$ is a convex function on the convex set $\{x|c_i(x)>0,\ i\in\mathcal{I}\}$
- The approximation gets better as $\mu \to 0$ $(t \to \infty, \mu = 1/t)$.

Optimality Conditions for the Barrier Transformed Problem

• The first order necessary conditions for the transformed problem (KKT):

$$\nabla f(x) - \sum_{i \in \mathcal{I}} \nabla c_i(x) \frac{\mu}{c_i(x)} - \sum_{i \in \mathcal{E}} a_i \lambda_i = 0$$
$$a_i^T x - b_i = 0, \quad i \in \mathcal{E}$$

• When x is close to the minimizer $x(\mu)$ and μ is small the optimal Lagrange multipliers λ_i^{\star} , $i \in \mathcal{I}$, can be estimated as

$$\lambda_i^{\star} = \mu/c_i(x), \quad i \in \mathcal{I}$$

Primal IPM

Algorithm:

Primal IPM

Choose $\mu_0 > 0$, a sequence $\{\tau_k\}$ with $\tau_k \to 0$ while A termination condition is not satisfied **do**

Find an approximate minimizer x_k of the barrier transformed problem. \triangleright Terminate when

$$\begin{aligned} & \max(\|\nabla f(x) - \sum_{i \in \mathcal{I}} \nabla c_i(x) \frac{\mu}{c_i(x)} - \sum_{i \in \mathcal{E}} a_i \lambda_i \|, \|a_i^T x - b_i\|) \leq \\ & \tau_k \\ & [\lambda_k]_i \leftarrow \mu_k / c_i(x_k), \ i \in \mathcal{I} \\ & \text{Choose } \mu_{k+1} < \mu_k \\ & k \leftarrow k+1 \end{aligned}$$
 end while

- Proposed Frisch in the 1950s and was analyzed and popularized by Fiacco and McCormick in the late 1960s.
- Fell out of favour: $x(\mu)$ becomes prohibitively difficult to find as $\mu \downarrow 0$ because of the nonlinearity of the barrier transformed problem.

A primal-dual reformulation of the optimality conditions

- Let $\lambda_i = \mu/c_i(x), i \in \mathcal{I}$.
- If $c_i(x) > 0$ then $\lambda_i \mu/c_i(x) = 0$ iff $c_i(x)\lambda_i \mu = 0$:

$$\nabla f(x) - \sum_{i \in \mathcal{I}} \nabla c_i(x) \lambda_i - \sum_{i \in \mathcal{E}} a_i \lambda_i = 0$$
$$a_i^T x - b_i = 0, \quad i \in \mathcal{E}$$
$$c_i(x) \lambda_i - \mu = 0, \quad i \in \mathcal{I}$$

- The equations are called *primal-dual nonlinear equations*.
- A method based on approximately solving these equations is called a *primal-dual interior point method*.
- Perturbed version of the KKT of the original problem:

$$\nabla f(x) - \sum_{i \in \mathcal{I}} \nabla c_i(x) \lambda_i - \sum_{i \in \mathcal{E}} a_i \lambda_i = 0$$

$$a_i^T x - b_i = 0, \quad i \in \mathcal{E}$$

$$\lambda_i \ge 0, \quad c_i(x) \ge 0, \quad i \in \mathcal{I}$$

$$c_i(x) \lambda_i = 0, \quad i \in \mathcal{I}$$

Interior Point Methods (IPM)

- The term interior point methods is used as a common name for methods of barrier type for nonlinear optimization.
- Barrier methods in primal form are from the 60s. They have some less desirable properties due to ill-conditioning. The methods were revived in 1984 for linear programming.
- Primal-dual interior point methods are methods of the 90s. They have better behavior.
- We will consider the special case of linear programming, for simplicity.

Primal LP:

Dual LP:

min
$$c^T x$$
 max $b^T y$
s.t. $Ax = b$ s.t. $A^T y + s = c$
 $x \ge 0$ $s \ge 0$

The primal-dual nonlinear equations

• Perturb the complementary condition $x_j s_j = 0$ to $x_j s_j = \mu$ for a positive barrier parameter.

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$x_{j}s_{j} = \mu, \quad j = 1, \dots, n$$

• $x \ge 0$ and $s \ge 0$ are kept "implicitly".

Theorem: The primal-dual nonlinear equations are well defined and have a unique solution with x > 0 and s > 0 for all $\mu > 0$ if $\{x | Ax = b, x > 0\} \neq \emptyset$ and $\{(y, s) : A^Ty + s = c, s > 0\} \neq \emptyset$. Denote this solution by $x(\mu)$, $y(\mu)$ and $s(\mu)$.

The primal-dual nonlinear equations

• In matrix form:

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XS\mathbf{1} = \mu\mathbf{1}$$

• $X = \operatorname{diag}(x)$, $S = \operatorname{diag}(s)$, and $\mathbf{1} = [1, \dots, 1]^T \in \mathbb{R}^n$.

Theorem: A solution $x(\mu)$, $y(\mu)$ and $s(\mu)$ is such that $x(\mu)$ is primal feasible and $y(\mu)$ and $s(\mu)$ are dual feasible with duality gap $n\mu$.

Primal Perspective

• $x(\mu)$ solves:

min
$$c^T x - \mu \sum_{i=1}^n \log x_i$$

s.t. $Ax = b, \quad x \ge 0$

- $y(\mu)$ Lagrange multiplier for Ax = b.
- Optimality conditions:

$$c_i - \mu/x_i = a_i^T y, \quad i = 1, \dots, n$$

$$Ax = b$$

$$x > 0$$

Dual Perspective

• $y(\mu)$ and $s(\mu)$ solve:

min
$$-b^T y - \mu \sum_{i=1}^n \log s_i$$

s.t. $A^T y + s = c, \quad s \ge 0$

- $-x(\mu)$ Lagrange multiplier for $A^Ty + s = c$.
- Optimality conditions:

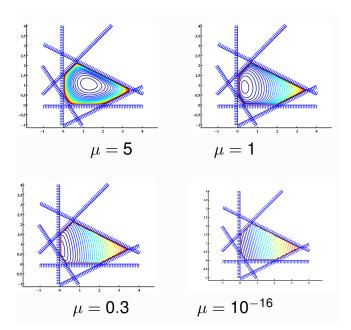
$$b = Ax$$

$$\frac{\mu}{s_i} = x_i, \quad i = 1, \dots, n$$

$$A^T y + s = c$$

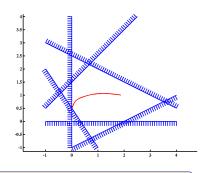
$$s > 0$$

Primal Barrier Function for different μ



Barrier Trajectory

- The barrier trajectory is defined as the set $\{[x(\mu), y(\mu), s(\mu)] | \mu > 0\}.$
- The primal-dual system of nonlinear equations is preferred.
- Pure primal and pure dual point of view gives high nonlinearity.



Theorem: If the barrier trajectory is well defined, then $\lim_{\mu\to 0} x(\mu) = x^*$, $\lim_{\mu\to 0} y(\mu) = y^*$, $\lim_{\mu\to 0} s(\mu) = s^*$, where x^* is primal optimal, and (y^*, s^*) are dual optimal.

Primal-Dual Interior Point Method Iterations

- Based on Newton-iterations on the perturbed optimality conditions.
- For a given point (x, y, s), with x > 0 and s > 0 a suitable value of μ is chosen. The Newton-iteration then becomes

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = - \begin{bmatrix} Ax - b \\ A^T y + s - c \\ XS\mathbf{1} - \mu\mathbf{1} \end{bmatrix}$$

- Common choice: $\mu = \sigma \frac{x^T s}{n}$ for some $\sigma \in [0, 1]$
- Note that Ax = b and $A^Ty + s = c$ do not need to be satisfied initially. They will be satisfied in the next step.

Primal-Dual Interior Point Method For LPs

Algorithm: Primal-Dual IPM for LPs

$$x_0 > 0, s_0 > 0, y_0, k \leftarrow 0$$

while A termination condition is not satisfied do
 $\mu \leftarrow \sigma x_k^T s_k/n$
Compute $\Delta x, \Delta y$, and Δs

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S_k & 0 & X_k \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} Ax_k - b \\ A^T y_k + s_k - c \\ X_k S_k \mathbf{1} - \mu \mathbf{1} \end{bmatrix}$$

 $\alpha_{\max} \leftarrow \max \ \alpha, \ \text{s.t.} x + \alpha \Delta x \geq 0, \ s + \alpha \Delta s \geq 0.$ $\alpha = \min(1, (1 - \tau)\alpha_{\max}) \quad \triangleright 0 < \tau \ll 1.$ This step rule is very simplistic; no convergence guarantees.

$$x_{k+1} \leftarrow x_k + \alpha \Delta x;$$

$$y_{k+1} \leftarrow y_k + \alpha \Delta y;$$

$$s_{k+1} \leftarrow s_k + \alpha \Delta s;$$

$$k \leftarrow k + 1$$

end while

17/26

Primal-Dual IPM For LPs: Choosing σ

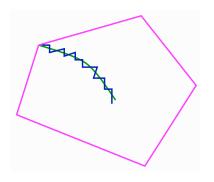
Theorem: Assume that x satisfies Ax = b, x > 0, and assume that y and s satisfies $A^Ty + s = c$, s > 0, and let $\mu = \sigma x^T s/n$. Then

$$(x + \alpha \Delta x)^T (s + \alpha \Delta s) = (1 - \alpha (1 - \sigma))x^T s.$$

- It is desirable to have σ small (accuracy) and α large (speed). These goals are in general contradictory.
- Strategies for σ :
 - 1. Short-step method, $\sigma \ll 1$.
 - 2. Long-step method, $\sigma \approx 1$.
 - 3. Predictor-corrector method, $\sigma_k = 0$, $k \in \mathbb{E}$ (even iterations) and $\sigma_k = 1$, $k \in \mathbb{O}$ (odd iterations)

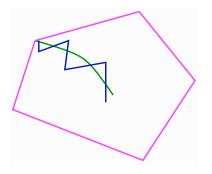
Primal-Dual IPM For LPs: Short-step method

- $\sigma_k = 0.1, \, \alpha_k = 1.$
- The iterates remain close to the barrier trajectory.



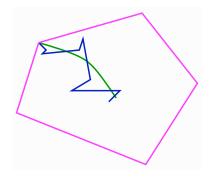
Primal-Dual IPM For LPs: Long-step method

• $\sigma_k = 1$, α_k is selected based on the proximity to the barrier trajectory.



Primal-Dual IPM For LPs: Predictor-corrector method

• The same as short-step for $k \in \mathbb{E}$ and as long-step for $k \in \mathbb{O}$.



- LP IPM converges in few iterations, in the order of 20.
- Typically does not grow with problem size.
- The iterates become more computationally expensive as the problem size increases.
- No clear efficient warm starting.

Solving the system of linear equations in LP-IPM

• Recall the system:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = - \begin{bmatrix} Ax - b \\ A^T y + s - c \\ XS\mathbf{1} - \mu\mathbf{1} \end{bmatrix}$$

• It is equivalent to solving:

$$\begin{bmatrix} X^{-1}S & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ -\Delta y \end{bmatrix} = -\begin{bmatrix} c - \mu X^{-1} \mathbf{1} - A^T y \\ Ax - b \end{bmatrix}$$

• In turn it is equivalent to:

$$AXS^{-1}A^{T}\Delta y = AXS^{-1}(c - \mu X\mathbf{1} - A^{T}y) + b - Ax$$

IPM for Convex Problems

• A primal-dual IPM approximately solves:

$$\nabla f(x) - \sum_{i \in \mathcal{I}} \nabla c_i(x) \lambda_i - \sum_{i \in \mathcal{E}} a_i \lambda_i = 0$$
$$a_i^T x - b_i = 0, \quad i \in \mathcal{E},$$
$$c_i(x) \lambda_i - \mu = 0, \quad i \in \mathcal{I}$$

- with implicit requirement: $c_i(x) > 0$ and $\lambda_i > 0$, $i \in \mathcal{I}$
- Newton iterations:

$$\begin{bmatrix} \nabla_{xx}^{2} \mathbf{L}(x,\lambda) & A^{T} & \nabla c_{\mathcal{I}}(x)^{T} \\ A & 0 & 0 \\ \Lambda_{\mathcal{I}} \nabla c_{\mathcal{I}}(x) & 0 & -C_{\mathcal{I}}(x) \end{bmatrix} \begin{bmatrix} \Delta x \\ -\Delta \lambda_{\mathcal{E}} \\ -\Delta \lambda_{\mathcal{I}} \end{bmatrix} = - \begin{bmatrix} \nabla_{x} \mathbf{L}(x,\lambda) \\ Ax - b \\ C_{\mathcal{I}}(x)\lambda_{\mathcal{I}} - \mu \mathbf{1} \end{bmatrix}$$

• $\Lambda_{\mathcal{I}} = \operatorname{diag}(\lambda_{\mathcal{I}})$ and $C_{\mathcal{I}}(x) = \operatorname{diag}(c_{\mathcal{I}}(x))$

IPM for Convex Problems: Solving the System of Linear Equations

- As seen before, one way of solving the problem is via factorisation.
- Let K be the coefficient:

$$P^TKP = LBL^T$$

- where L is lower triangular and B is block diagonal, and P is a matrix of row and column permutations.
- The permutation matrix P seeks a compromise between the goals of preserving sparsity and ensuring numerical stability.
- One can eliminate $-\Delta \lambda_{\mathcal{I}}$ to obtain a smaller problem with coefficient matrix

$$\begin{bmatrix} \nabla^2 \mathbf{L}(x,\lambda) + \nabla c_{\mathcal{I}}(x)^T C_{\mathcal{I}}(x)^{-1} \nabla c_{\mathcal{I}}(x) & A^T \\ A & 0 \end{bmatrix}$$

• Note that all these systems are ill-conditioned due to the nature of the problem.

A Dual-Primal IPM for Convex Problems

Algorithm: Dual-Primal IPM

A feasible x such that $c_{\mathcal{I}}(x_0) > 0$, y_0 , $z_0 > 0$, $\mu_0 > 0$ and $\sigma > 0$, $k \leftarrow 0$ $\Rightarrow y$ stands in for $\lambda_{\mathcal{E}}$ and z for $\lambda_{\mathcal{I}}$ while A termination condition is not satisfied **do** Compute Δx , Δy , and Δz

$$\begin{bmatrix} \nabla^2 \mathbf{L}(x_k, y_k, z_k) & A^T & \nabla c_{\mathcal{I}}(x_k)^T \\ -A & 0 & 0 \\ -Z_k \nabla c_{\mathcal{I}}(x_k) & 0 & C_{\mathcal{I}}(x_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla \mathbf{L}(x_k, y_k, z_k) \\ Ax_k - b \\ Z_k c_{\mathcal{I}}(x_k) - \mu_k \mathbf{1} \end{bmatrix}$$

Choose
$$\alpha_k$$
 such that $c_{\mathcal{I}}(x+\alpha_k\Delta x)>0$, $z_k+\alpha_x\Delta z_k>0$ $x_{k+1}\leftarrow x_k+\alpha\Delta x; \ y_{k+1}\leftarrow y_k+\alpha\Delta y; \ z_{k+1}\leftarrow s_k+\alpha\Delta z;$ if $\max(\|\nabla f(x)-\sum_{i\in\mathcal{I}}\nabla c_i(x)\lambda_i-\sum_{i\in\mathcal{E}}a_i\lambda_i\|,\|Ax-b\|,\|c_i(x)\lambda_i-\mu\|)\leq \epsilon$ then \Rightarrow desired accuracy $\mu_{k+1}\leftarrow\sigma\mu_k$ $\Rightarrow\sigma$ can be 0.1 or time-varying end if $k\leftarrow k+1$ end while

IPM for Convex Problems with Slack Variables

- Having $c_{\mathcal{I}}(x) > 0$ might be troublesome.
- An alternative is to add slack variables:

$$\nabla f(x) - \sum_{i \in \mathcal{I}} \nabla c_i(x) \lambda_i - \sum_{i \in \mathcal{E}} a_i \lambda_i = 0$$

$$a_i^T x - b_i = 0, \quad i \in \mathcal{E},$$

$$c_i(x) - s_i = 0, \quad i \in \mathcal{I},$$

$$s_i \lambda_i - \mu = 0, \quad i \in \mathcal{I}$$

- with implicit requirement: $s_i > 0$ and $\lambda_i > 0$, $i \in \mathcal{I}$
- Newton iterations:

$$\begin{bmatrix} \nabla^2 \mathbf{L}(x,\lambda) & A^T & \nabla c_{\mathcal{I}}(x)^T \\ A & 0 & 0 \\ \Lambda_{\mathcal{I}} \nabla c_{\mathcal{I}}(x) & 0 & -S_{\mathcal{I}} \end{bmatrix} \begin{bmatrix} \Delta x \\ -\Delta \lambda_{\mathcal{E}} \\ -\Delta \lambda_{\mathcal{I}} \end{bmatrix} = - \begin{bmatrix} \nabla \mathbf{L}(x,\lambda) \\ Ax - b \\ \Lambda_{\mathcal{I}} c_{\mathcal{I}}(x) - \mu \mathbf{1} \end{bmatrix}$$

- $\Lambda_{\mathcal{T}} = \operatorname{diag}(\lambda_{\mathcal{T}})$ and $S_{\mathcal{T}} = \operatorname{diag}(s_{\mathcal{T}})$
- $\Delta s_{\tau} = -s_{\tau} + c_{\tau}(x) + \nabla c_{\tau}(x) \Delta x$
- Ensure that $s_{\mathcal{I}} > 0$ and $\lambda_{\mathcal{I}} > 0$ in the linesearch. We obtain $c_{\mathcal{I}}(x) \geq 0$ asymptotically.